Remote Monitoring of Groundwater with Orbital Radar

Tom G Farr, Zhen Liu
Jet Propulsion Laboratory
tom.farr@jpl.nasa.gov

Groundwater from Space

- Groundwater is becoming a more important part of water resources
- But knowledge of the groundwater level is not uniformly available
- Wells provide some monitoring capability, but there are political and practical difficulties
- Interferometric Synthetic Aperture Radar (InSAR) can provide information on groundwater levels by measuring surface deformation caused by withdrawal and recharge of aquifers
- The deformation also causes problems for infrastructure such as aqueducts and trains
- We are developing information products for water managers, the public, and hydrologists including animations, maps of 'hot spots', pixel histories, and regional maps of groundwater change

Hydrology 101: Aquifer compaction

Interferometry 101: Deformation maps

When two observations are made from the same location in space but at different times, the interferometric phase is proportional to any change in the range of a surface feature.

Surface Deformation Phase

Orbital Radars for Interferometry

Satellite	dates	resolution (m)	swath (km)	incidence angles	minimum revisit (days)	band*/pol
ERS 1,2	1991-2010	25	100	25°	35	CVV
Envisat	2002-2010	25	100	15-45°	35	CVV, CHH
PALSAR	2006-2011	10-100	40-350	10-60°	46	L-quad
Radarsat 1	1995-2013	10-100	45-500	20-49°	24	СНН
Radarsat 2	2008-	3-100	25-500	10-60°	24	C-quad
TerraSAR-X	2007-	1-16	5-100	15-60°	11	X-quad
Cosmo- Skymed	2007-	1-100	10-200	20-60°	<1	X-quad
PALSAR-2	2014?	3-60	50-350	8-70°	14	L-quad
Sentinel	2014?	20	250	30-45°	14	C-dual
NI SAR	2020?	35	350	15-60°	12	L-quad

^{*} wavelengths: $X \sim 3$ cm, $C \sim 5$ cm, $L \sim 25$ cm

Monitoring LA Basin

Monitoring LA Basin

Subsidence in the Central Valley of California: PALSAR, 2007-2011

Summary and Next Steps

- InSAR maps and measures subsidence and rebound which correlates with groundwater withdrawal and recharge
- A new project funded by the California Department of Water Resources (DWR) will extend the time series into 2014
- We are also working with DWR to define a project to build capacity to monitor subsidence into the future as is being done in Arizona
- We currently rely on data from other countries (Japan, Europe, and Canada)
- The NASA L-band SAR mission will ensure continuity of these critical data sets